Conditions for designing single-mode air-core waveguides in threedimensional photonic crystals

V. Lousse^{a,b}, J. Shin^b, and S. Fan^b,

^a Dept. of Physics, Namur University, rue de Bruxelles 61, B-5000 Namur, Belgium. ^b Ginzton Laboratory, Stanford University, Stanford, California 94305, USA.

We present a general procedure that allows the design of single-mode air-core waveguides in three-dimensional photonic crystals. The procedure involves analyzing the modal profile of the bandedge mode in the perfect crystal, identifying the regions of maximal electric-field intensity and placing the air defects to enclose these regions.¹

As an illustration, we present a detailed design of air-core waveguides in a recently proposed silicon body-center-cubic crystal structure, compatible with the holographic fabrication technique, that possesses a 25% complete bandgap between the 2^{nd} and the 3^{rd} band. We show that the waveguiding bandwidth reaches 102 nm centered at a wavelength of 1.5 μ m. As a second example, we consider air-core waveguides in an inverted opal photonic crystal made of interpenetrating air spheres, coated with Ge. Here we focus on the complete gap between the 8^{th} and the 9^{th} band, since a projected band analysis reveals that it is difficult to use the large lower incomplete gap for guiding purposes. In that case, we find a 113 nm waveguiding bandwidth centered at a wavelength of 1.5 μ m. ²

- [1] V. Lousse, J. Shin, and S. Fan, *Appl. Phys. Lett.*, **89**, 161103 (2006).
- [2] V. Lousse, and S. Fan, Opt. Express, 14, 866 (2006).